Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing disease resistance in poplar through modification of its natural defense pathway.

Identifieur interne : 000984 ( Main/Exploration ); précédent : 000983; suivant : 000985

Enhancing disease resistance in poplar through modification of its natural defense pathway.

Auteurs : Dmytro P. Yevtushenko [Canada] ; Santosh Misra [Canada]

Source :

RBID : pubmed:31073810

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.


DOI: 10.1007/s11103-019-00874-2
PubMed: 31073810


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhancing disease resistance in poplar through modification of its natural defense pathway.</title>
<author>
<name sortKey="Yevtushenko, Dmytro P" sort="Yevtushenko, Dmytro P" uniqKey="Yevtushenko D" first="Dmytro P" last="Yevtushenko">Dmytro P. Yevtushenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada. dmytro.yevtushenko@uleth.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6</wicri:regionArea>
<wicri:noRegion>V8W 3P6</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31073810</idno>
<idno type="pmid">31073810</idno>
<idno type="doi">10.1007/s11103-019-00874-2</idno>
<idno type="wicri:Area/Main/Corpus">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000909</idno>
<idno type="wicri:Area/Main/Curation">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000909</idno>
<idno type="wicri:Area/Main/Exploration">000909</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhancing disease resistance in poplar through modification of its natural defense pathway.</title>
<author>
<name sortKey="Yevtushenko, Dmytro P" sort="Yevtushenko, Dmytro P" uniqKey="Yevtushenko D" first="Dmytro P" last="Yevtushenko">Dmytro P. Yevtushenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada. dmytro.yevtushenko@uleth.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6</wicri:regionArea>
<wicri:noRegion>V8W 3P6</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimicrobial Cationic Peptides (metabolism)</term>
<term>Ascomycota (immunology)</term>
<term>Disease Resistance (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Plants, Genetically Modified (immunology)</term>
<term>Populus (genetics)</term>
<term>Populus (immunology)</term>
<term>Populus (microbiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Ascomycota (immunologie)</term>
<term>Génome végétal (MeSH)</term>
<term>Peptides antimicrobiens cationiques (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (immunologie)</term>
<term>Populus (microbiologie)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antimicrobial Cationic Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Ascomycota</term>
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Ascomycota</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptides antimicrobiens cationiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Promoter Regions, Genetic</term>
<term>Transformation, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Régions promotrices (génétique)</term>
<term>Transformation génétique</term>
<term>Transgènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31073810</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>4-5</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhancing disease resistance in poplar through modification of its natural defense pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>481-494</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-019-00874-2</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="UNASSIGNED">Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yevtushenko</LastName>
<ForeName>Dmytro P</ForeName>
<Initials>DP</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8628-390X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada. dmytro.yevtushenko@uleth.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Misra</LastName>
<ForeName>Santosh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023181">Antimicrobial Cationic Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D023181" MajorTopicYN="N">Antimicrobial Cationic Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Disease resistance</Keyword>
<Keyword MajorTopicYN="N">Host defense peptides</Keyword>
<Keyword MajorTopicYN="N">MsrA2</Keyword>
<Keyword MajorTopicYN="N">Populus nigra L. × P. maximowiczii A. Henry</Keyword>
<Keyword MajorTopicYN="N">Septoria musiva</Keyword>
<Keyword MajorTopicYN="N">win3.12T poplar promoter</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31073810</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-019-00874-2</ArticleId>
<ArticleId IdType="pii">10.1007/s11103-019-00874-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2000 Jun 29;10(13):751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10898976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Aug;13(8):847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Nov;18(11):1162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Dec;18(12):1307-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Apr;45(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 24;415(6870):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Mar;107(3):679-685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Sep;9(9):457-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1685-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Aug;111(4):711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Sci. 2005 Nov;11(11):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Nov;5(6):720-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:273-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Aug;1788(8):1537-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18929530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2010 Mar;29(3):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):3-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Dec;31(12):1319-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Feb;17(2):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Oct;32(10):1313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2013 Nov;100(6):572-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23553602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Sep;11(7):785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23915092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Feb;13(5):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Feb;11(1):2-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1975 Jan;126(2):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2014 Oct;27:446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24486735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Jun;223:69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1981 Apr 6;642(2):213-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7284358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Sep;109(1):73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7480333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1995 Mar;4(2):132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 31;33(21):6642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8204601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jul;22(4):561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8343595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Mar;11(3):218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9487696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1998 Feb;16(2):82-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9487736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Yevtushenko, Dmytro P" sort="Yevtushenko, Dmytro P" uniqKey="Yevtushenko D" first="Dmytro P" last="Yevtushenko">Dmytro P. Yevtushenko</name>
</noRegion>
<name sortKey="Misra, Santosh" sort="Misra, Santosh" uniqKey="Misra S" first="Santosh" last="Misra">Santosh Misra</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000984 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000984 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31073810
   |texte=   Enhancing disease resistance in poplar through modification of its natural defense pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31073810" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020